Mixed-Linkage Glucan Oligosaccharides Produced by Automated Glycan Assembly Serve as Tools To Determine the Substrate Specificity of Lichenase.

نویسندگان

  • Pietro Dallabernardina
  • Frank Schuhmacher
  • Peter H Seeberger
  • Fabian Pfrengle
چکیده

The mixed-linkage (1→3),(1→4)-d-glucan (MLG) specific glycosyl hydrolase lichenase is an important biochemical tool for the structural characterization of MLGs. It holds potential for application in the brewery, animal feed, and biofuel industries. Several defined MLG oligosaccharides obtained by automated glycan assembly are used to analyze the substrate specificities of Bacillus subtilis lichenase. Two glucose building blocks (BBs), equipped with a temporary fluorenylmethyloxycarbonyl chloride (Fmoc) protecting group in the C-3 or C-4 position, served to assemble different oligosaccharides by using an automated oligosaccharide synthesizer. Light-induced cleavage of the glycan products from the solid support followed by global deprotection provided seven MLG oligosaccharides of different length and connectivity. After incubation of the MLG oligosaccharides with lichenase, the digestion products were analyzed by HPLC-MS. These digestion experiments provided insights into the enzyme's active site that is in line with other recent evidence suggesting that the substrate specificity of lichenases has to be reconsidered. These results demonstrate that synthetic MLG oligosaccharides are useful tools to analyze mixed-linkage β-glucanases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining Substrate Specificities of β1,4-Endogalactanases Using Plant Arabinogalactan Oligosaccharides Synthesized by Automated Glycan Assembly.

Pectin is a structurally complex plant polysaccharide with many industrial applications in food products. The structural elucidation of pectin is aided by digestion assays with glycosyl hydrolases. We report the automated glycan assembly of oligosaccharides related to the arabinogalactan side chains of pectin as novel biochemical tools to determine the substrate specificities of endogalactanase...

متن کامل

Automated Glycan Assembly of Oligosaccharides Related to Arabinogalactan Proteins.

Arabinogalactan proteins are heavily glycosylated proteoglycans in plants. Their glycan portion consists of type-II arabinogalactan polysaccharides whose heterogeneity hampers the assignment of the arabinogalactan protein function. Synthetic chemistry is key to the procurement of molecular probes for plant biologists. Described is the automated glycan assembly of 14 oligosaccharides from four m...

متن کامل

Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase

Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood - details that would promote understanding of MXE's role in vivo and enable its full technological exploitatio...

متن کامل

Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in reuteransucrase of Lactobacillus reuteri

The glucansucrase GTFA of Lactobacillus reuteri 121 produces an α-glucan (reuteran) with a large amount of alternating (α1 → 4) and (α1 → 6) linkages. The mechanism of alternating linkage formation by this reuteransucrase has remained unclear. GTFO of the probiotic bacterium Lactobacillus reuteri ATCC 55730 shows a high sequence similarity (80%) with GTFA of L. reuteri 121; it also synthesizes ...

متن کامل

A Bacteroidetes locus dedicated to fungal 1,6-β-glucan degradation: Unique substrate conformation drives specificity of the key endo-1,6-β-glucanase

Glycans are major nutrients available to the human gut microbiota. The Bacteroides are generalist glycan degraders, and this function is mediated largely by polysaccharide utilization loci (PULs). The genomes of several Bacteroides species contain a PUL, PUL1,6-β-glucan, that was predicted to target mixed linked plant 1,3;1,4-β-glucans. To test this hypothesis we characterized the proteins enco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 23 13  شماره 

صفحات  -

تاریخ انتشار 2017